
1

iANPR SDK
Version 1.7

Documentation

© 2018. IntBuSoft

2

CONTENTS

Introduction
1. Modules
 1.1. Recognition module – iANPR

 anprPlate
 Structure ANPR_OPTIONS
 Types of recognizable numbers
 Type ANPR_CUSTOM_TYPE
 anprPlateRect
 LicenseValue
 1.2. Interface module – iANPRinterface
 1.3. Stream module – iANPRcapture
2. Installation and use
 2.1. Windows
 2.2. Linux
3. Examples on C/C++ for Windows
 3.1. Image
 3.2. Image_new
 3.3. Image_omp
 3.4. Capture
 3.5. Capture_(iANPRcapture)

 3.6. (iANPRcapture_motion)
 3.7 Persptrans
4. Examples in other programming languages for Windows
 4.1. C#

 4.1.1. Example iANPRcapture_motion in C# for iANPR SDK
 4.2. Delphi
5. Recommendations for use

6. How to use the demo version of the iANPR SDK
Conclusion

3

Introduction

iANPR SDK is a set of development tools for car plate number
recognition. The main goal is to provide automated recognition of car
numbers based on the OpenCV computer vision library. The library
features include image processing. The main language of the library is
C/C++.

Version 1.7 compiled with versions of OpenCV 3.4.0, if necessary (at
the request of the Client for FULL versions) can be compiled for a different
version.

Types of licenses
iANPR FREE This type of license is intended for free use of a library

with limited recognition capabilities: the speed of work is artificially
significantly slowed down. This type of license can only be used for
educational and / or academic purposes. It is not allowed to distribute the
software together with this library.

iANPR RUS PRO LIMITED This is a paid license, which provides all
the capabilities for recognizing standard and transit Russian plate numbers.
It is allowed to use only for own needs within the organization (or only by
an individual) that has accepted this license.

iANPR RUS PRO EXTENDED LIMITED This is a paid license, which
provides all the capabilities for recognizing standard and transit Russian
plate numbers, as well as other types of numbers present in this version. It
is allowed to use only for own needs within the organization (or only by an
individual) that has accepted this license.

iANPR RUS PRO FULL This is a paid license, which provides all the
capabilities to recognize all types of vehicle plate numbers in the Russian
Federation that are present in this version. You can use this license for
distribution in the composition with your own software product.

iANPR KAZ PRO LIMITED This is a paid license that provides all the
capabilities for recognizing private and corporate numbers of Kazakhstan
(only rectangular one-line). It is allowed to use only for own needs within
the organization (or only by an individual) that has accepted this license.

iANPR KAZ PRO FULL This is a paid license, which provides all the
opportunities for recognizing private and corporate numbers of Kazakhstan
(only rectangular one-line). You can use this license for distribution in the
composition with your own software product.

iANPR TM PRO LIMITED This is a paid license, which provides all
the opportunities for recognizing private and business numbers of
Turkmenistan (only rectangular one-line ones). It is allowed to use only for
own needs within the organization (or only by an individual) that has
accepted this license.

4

iANPR TM PRO FULL This is a paid license, which provides all the
opportunities for recognizing private and business numbers of
Turkmenistan (only rectangular one-line ones). You can use this license for
distribution in the composition with your own software product.

iANPR BY PRO LIMITED This is a paid license, which provides all
the possibilities for recognizing the numbers of Belarus. It is allowed to use
only for own needs within the organization that has accepted this license.

iANPR BY PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Belarus. You can use this
license for distribution in the composition with your own software product.

iANPR PL PRO LIMITED This is a paid license, which provides all the
possibilities for recognizing the numbers of Poland. It is allowed to use only
for own needs within the organization that has accepted this license.

iANPR PL PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Poland. You can use this
license for distribution in the composition with your own software product.

iANPR LV PRO LIMITED This is a paid license, which provides all the
possibilities for recognizing the numbers of Latvia. It is allowed to use only
for own needs within the organization that has accepted this license.

iANPR LV PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Latvia. You can use this license
for distribution in the composition with your own software product.

iANPR LT PRO LIMITED This is a paid license, which provides all the
possibilities for recognizing the numbers of Lithuania. It is allowed to use
only for own needs within the organization that has accepted this license.

iANPR LT PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Lithuania. You can use this
license for distribution in the composition with your own software product.

iANPR EST PRO LIMITED This is a paid license, which provides all
the possibilities for recognizing the numbers of Estonia. It is allowed to use
only for own needs within the organization that has accepted this license.

iANPR EST PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Estonia. You can use this
license for distribution in the composition with your own software product.

iANPR UA PRO LIMITED This is a paid license, which provides all
the possibilities for recognizing the numbers of Ukraine. It is allowed to use
only for own needs within the organization that has accepted this license.

iANPR UA PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Ukraine. You can use this
license for distribution in the composition with your own software product.

iANPR MD PRO LIMITED This is a paid license, which provides all
the possibilities for recognizing the numbers of Moldova. It is allowed to use
only for own needs within the organization that has accepted this license.

5

iANPR MD PRO FULL This is a paid license, which provides all the
possibilities for recognizing the numbers of Moldova. You can use this
license for distribution in the composition with your own software product.

iANPR PRO FULL ALL This is a paid license that provides all the
capabilities for recognizing the numbers of the iANPR library for all
countries currently supported. You can use this license for distribution in
the composition with your own software product.

ARM – this designation characterizes a separate product covered by
this license agreement, but other pricing rules.

It is possible to combine licenses to recognize the numbers of
different countries. Terms of sharing are available on the website:
http://intbusoft.com/iANPR/

http://intbusoft.com/iANPR/

6

1. Modules

In version 1.7, the library is divided into 3 modules:
• recognition module;
• interface module;
• streaming module.
In the recognition module, the basic functions for recognizing car

numbers remained.
The interface module is designed to facilitate access to the

recognition functions and provides various access options.
The stream module is designed to combine recognition results from

several frames.

1.1. Recognition module – iANPR

This module (iANPR.h) implements the recognition of one image.

anprPlate

The function of searching for car plates on the OpenCV format image.

int anprPlate(

IplImage* Image,

ANPR_OPTIONS Options,

int* AllNumber, CvRect* Rects,

char** Texts,

void* param = NULL

);

Parameters:
Image - input image in OpenCV format (8-bit 1-channel or 8-bit 3-channel
depending on Options.type_number parameters);
Options - settings for the recognition mode in ANPR_OPTIONS structure
format;
AllNumber - the number of the found numbers. Before function calling
must contain Texts lines count;

Rects - a pointer to an array of CvRect structures (this is a structure from
the OpenCV library), where the zones of car plates are located;

7

Texts - a pointer to an array of pointers of a character type, in which text
will be returned for each car plate, pointers should point to previously
allocated areas of memory;
param - not yet used.

The anprPlate function returns 0 if at least one car number is

successfully found. 1 - no candidate for the car number was detected, 2 -
no car numbers were found. In addition, one of the following errors defined
in iANPRerror.h can be returned:

IMAGE_EMPTY (-2) The image is empty;
ERROR_TYPE_PLATE (-100) Unsupported type for this

configuration. For example, the license iANPR RUS PRO LIMITED does
not support the ANPR_RUSSIAN_PUBLIC type flag. Therefore, its use will
return an error.

ERROR_TYPE_FOR_COLOR (-101) The image type and the car
number type flag in the ANPR_OPTIONS structure do not match.

Structure ANPR_OPTIONS

This structure determines the recognition modes.

struct ANPR_OPTIONS

{

 char sign1 = 'i', sign2 = 'a', sign3 = '1'; //

service information, should not be modified

 int min_plate_size; // Minimal area of car plate

 int max_plate_size; // Maximum area of car plate

 int Detect_Mode; // Detection modes

 int max_text_size; // Maximum number of

characters of car plate + 1

 int type_number; // Type of car plate

 int flags; // Additional options

 void* custom; // Filled only for type

ANPR_CUSTOM_TYPE, otherwise empty

 char* vers = "1.6"; // Version of iANPR SDK being

used. If not specified (vers = 0), then 1.5 is assumed.

 double alpha = 90.0; // Rotate around the X axis

 double beta = 90.0; // Rotate around the Y axis

 double gamma = 90.0; // Rotate around the Z axis

 int max_threads = 1; // Number of threads;

}

8

The minimum and maximum areas of car plates limit the search for
candidates for car plates. The area of the car plate is determined by the
product of the width of the car plate by its height. If it is necessary to
specify the car plates of the Russian Federation through the width, the
following recalculation can be used:

min_plate_size = min_plate_width * min_plate_height;
max_plate_size = max_plate_width * max_plate_height;
where min_plate_width is the minimum width of the car plate,

max_plate_width is the maximum width of the car plate, min_plate_height
is the minimum height of the car plate, max_plate_height is the maximum
height of the car plate.

Detect_Mode determines the modes of detecting a car plate. You can
even use them together. In this version there are 4 detection modes:

 ANPR_DETECTMODE1,

 ANPR_DETECTMODE2,

 ANPR_DETECTMODE3,

 ANPR_DETECTMODE4.
They differ in the settings when searching for car plates and they can

be used together (although the performance be slightly reduced).
ANPR_DETECTMODE1 - A method based on the detection of a

whole car plate with simple adaptive image processing.
ANPR_DETECTMODE2 - A method based on the detection of a

whole car plate with adaptive image processing based on the removal of
small jumpers. Includes almost 100% of the car plates detected using
ANPR_DETECTMODE1, as well as car plates that
ANPR_DETECTMODE1 are not detected. Therefore,
ANPR_DETECTMODE1 is not recommended.

ANPR_DETECTMODE3 - A method based on the detection of the
whole car plate with block image processing.

ANPR_DETECTMODE4 - A method based on the detection of parts
of a car plate with simple adaptive image processing. It is not
recommended to use it separately from other methods, because it gives
low values of detected car plates and not always accurate detection.
However, it detects those car plates that are not detected by other
methods. In this case, a significant car plates of additional false positives
may appear, for example, on posters.

For qualitative recognition, it is recommended to use combinations of
methods ANPR_DETECTMODE2 and ANPR_DETECTMODE3, or
ANPR_DETECTMODE2 + ANPR_DETECTMODE3 +
ANPR_DETECTMODE4, the last combination of methods can be obtained
by one flag ANPR_DETECTCOMPLEXMODE.

Definition in iANPR.h:

#define ANPR_DETECTMODE1 0x01

9

#define ANPR_DETECTMODE2 0x02

#define ANPR_DETECTMODE3 0x04

#define ANPR_DETECTMODE4 0x08

The maximum number of characters in a car plate must match the

maximum size specified in the Texts of the anprPlate function. Of course,
the maximum number of characters + the end-of-line character (0) is 10,
but if you put more buffer size, for example, 20, then this will not be an
error.

type_number specifies the type of car numbers to be recognized.
flags defines additional recognition modes. It is necessary to set 0 for

the time being, and if it is necessary to output numbers even with a low
quality of recognition of individual characters (including those with symbols
replaced by the “?" Sign), then set the DEBUG_RECOGNITION_MODE
flag to 1. The NO_LOW_RELIABILITY flag is used to reduce false
positives, some numbers with low reliability can be discarded.

The flag RETURN_TYPE_NUMBER allows you to output after the
recognized car number through the colon its type. For example X111XX11:
0.

The IR_LIGHTING_CAMERA flag indicates that an infrared camera is
used for shooting, that is, the background is white in the image, and the
numbers are black.

In version 1.7, the following return types are defined:
Russian car numbers

Car number type Code Description

TYPE_RUSSIAN_BASE 0 Base car numbers of Russia

TYPE_RUSSIAN_TRANSIT 1 Transit car numbers of Russia

TYPE_RUSSIAN_TRAILER 2 Trailer car numbers of Russia

TYPE_RUSSIAN_PUBLIC 3 Public transport car numbers of Russia

TYPE_RUSSIAN_POLICE 4 Russian police car numbers

TYPE_RUSSIAN_ARMY 5 Military car numbers of Russia

TYPE_RUSSIAN_SQUARE_BASE 6 Tractor or motorcycle numbers of Russia

TYPE_RUSSIAN_DIPLOMAT 7 Diplomat car numbers of Russia

Car numbers of Kazakhstan

Car number type Code Description

TYPE_KAZ_PRIVATE1993 21 Private car numbers of the 1993 standard

TYPE_KAZ_ORGANIZATION1993 22 Car numbers of the organizations of the
1993 standard

TYPE_KAZ_PRIVATE2012 23 Private car numbers of the 2012 standard

TYPE_KAZ_ORGANIZATION2012 24 Car numbers of organizations of the 2012
standard

Car numbers of the Republic of Belarus

Car number type Code Description

TYPE_BY_2004_BASE 30 Basic car numbers of the 2004 standard

TYPE_BY_TRANSIT 31 Transit car numbers of standard STB 914-

10

99 (type 12 and 12a as revised in 2011)

TYPE_BY_2004_TRAILER 32 Trailer car numbers of the 2004 standard

TYPE_BY_PUBLIC 33 Public transport car numbers

TYPE_BY_POLICE 34 Police car numbers

TYPE_BY_ARMY 35 Military car numbers

TYPE_BY_SQUARE_BASE 36 Rear Base Two-Line car numbers of the
2004 standard

TYPE_BY_2004_TRUCK 37 Truck and bus car numbers of the 2004
standard

TYPE_BY_1992_TRUCK 38 Truck and bus car numbers of the 1992
standard

Car numbers of Poland

Car number type Code Description

TYPE_PL_BASE 40 Base car numbers of the 2000 and 2006
standard

Car numbers of Latvia

Car number type Code Description

TYPE_LV_BASE 50 Base car numbers for the 1992 and 2004
standard

Car numbers of Lithuania

Car number type Code Description

TYPE_LT_BASE 60 Base car numbers of the 2004 standard

Car numbers of Estonia

Car number type Code Description

TYPE_EST_BASE 70 Base car numbers of the 2004 standard

Car numbers of Ukraine

Car number type Code Description

TYPE_UA_BASE 80 Base car numbers of the 2015 standard
(passenger cars, trailers, buses)

TYPE_UA_TRANSIT 81 Car numbers for single trips on cars,
trailers and buses of the 2015 standard

TYPE_UA_DIPLOMAT 82 Car numbers of diplomats and technical
personnel of the 2013 standard

Car numbers of Moldova
Car number type Code Description

TYPE_MD_2011_BASE 90 Car numbers of legal entities of the 2011-
2015 standard

TYPE_MD_2011_TRAILER 91 Trailer and semi-trailer car numbers of the
2011-2015 standard

TYPE_MD_2011_SQUARE_BASE 92 Motorcycle numbers 2011-2015 standard

It must be remembered that the buffer size for the text are larger than

the number with the return type.

11

Types of recognizable car numbers
Types of recognition of Russian numbers

Car number type Code Image type Описание
поддерживаемых
номеров

ANPR_RUSSIAN_BASE 0 8bit, 1
channel

Basic

ANPR_RUSSIAN_BASE2 1 8bit, 1
channel

Basic and transit

ANPR_RUSSIAN_EXTENDED 2 8bit, 1
channel

Base, transit and trailer

ANPR_RUSSIAN_PUBLIC 3 8bit, 1
channel

Public transport only

ANPR_RUSSIAN_POLICE 5 8bit, 1
channel

Police car numbers only

ANPR_RUSSIAN_ARMY 6 8bit, 1
channel

Military car numbers only

ANPR_RUSSIAN_EXTENDED2 4 8bit, 3
channel

ANPR_RUSSIAN_EXTENDED
+ ANPR_RUSSIAN_PUBLIC

ANPR_RUSSIAN_FULL 7 8bit, 3
channel

ANPR_RUSSIAN_EXTENDED2
+ ANPR_RUSSIAN_POLICE +
ANPR_RUSSIAN_ARMY

ANPR_RUSSIAN_SQUARE_BASE 8 8bit, 1
channel

Square car numbers only

ANPR_RUSSIAN_FULL_WITH_SQUARE 9 8bit, 3
channel

ANPR_RUSSIAN_FULL +
ANPR_RUSSIAN_SQUARE_BASE

8bit, 1 channel – image in gradations of gray; 8bit, 3 channel – color
image.

Base car numbers [GOST R 50577-93]:

Transit russian car numbers (MM976M34).

Trailer car numbers:

12

Public transport – yellow car numbers of MM11122 format.
Police car numbers are blue car numbers of M111122 format.
Military car numbers are black car numbers of 1111MM22 format.
Square car numbers of motorcycles and tractors type:
1111
MM22

Types of recognition of car numbers in Kazakhstan

Car number type Code Image type Description

ANPR_KAZ_1993_PRIVATE 100 8bit,
1 channel

Private car numbers of
the 1993 Standard

ANPR_KAZ_1993_ORGANIZATION 101 8bit,
1 channel

Car numbers of
organizations of the 1993
standard

ANPR_KAZ_2012_PRIVATE 102 8bit,
1 channel

Private car numbers of
the 2012 standard

ANPR_KAZ_2012_ORGANIZATION 103 8bit,
1 channel

Car number of
organizations of the 2012
standard

ANPR_KAZ_BASE 104 8bit,
1 channel

Private and organization
car numbers of the 1993
and 2012 standards

Types of recognition of car numbers in Turkmenistan

Car number type Code Image type Description

ANPR_TM_2009 201 8bit,
1 channel

Private car numbers of
the 2009 Standard

ANPR_TM_PRIVATE_BEFORE_2009 202 8bit,
1 channel

Private car numbers of
the standard until 2009

ANPR_TM_BASE 203 8bit,
1 channel

All private car numbers

Types of recognition of car numbers of the Republic of Belarus

Car number type Code Image type Description

ANPR_BY_TRUCK 300 8bit,
1 channel

All cargo car numbers

ANPR_BY_2004_TRUCK 301 8bit,
1 channel

Cargo car numbers of the
2004 standard

ANPR_BY_1992_TRUCK 302 8bit,
1 channel

Cargo car numbers of the
1992 standard

ANPR_BY_2004_TRAILER 303 8bit,
1 channel

Rear car numbers for
trailers and semi-trailers

13

since 2004

ANPR_BY_2004_BASE 304 8bit,
1 channel

Passenger cars starting
from 2004

ANPR_BY_SQUARE_BASE 305 8bit,
1 channel

Rear two-line car numbers,
starting from 2004

ANPR_BY_2004_BASE2 306 8bit,
1 channel

ANPR_BY_2004_TRUCK +
ANPR_BY_2004_BASE +
ANPR_BY_2004_TRAILER

ANPR_BY_TRANSIT 307 8bit,
1 channel

Transit car numbers of
standard STB 914-99 (type
12 and 12a as revised in
2011)

ANPR_BY_PUBLIC 308 8bit,
1 channel

Public transport

ANPR_BY_POLICE 309 8bit,
1 channel

Police car numbers

ANPR_BY_FULL 310 8bit,
3 channel

ANPR_BY_2004_BASE2 +
ANPR_BY_TRANSIT +
ANPR_BY_PUBLIC +
ANPR_BY_POLICE

ANPR_BY_FULL_WITH_SQUARE 311 8bit,
3 channel

ANPR_BY_FULL +
ANPR_BY_SQUARE_BASE

ANPR_BY_2004_BASE3 312 8bit,
1 channel

ANPR_BY_2004_BASE2 +
ANPR_BY_TRANSIT

Types of recognition of car numbers in Poland

Car number type Code Image type Description

ANPR_PL_BASE 400 8bit, 1 channel Standard car numbers of Poland
ANPR_PL_BASE_7 +
ANPR_PL_BASE_8

ANPR_PL_BASE_7 401 8bit, 1 channel Standard car numbers in Poland (7
characters)

ANPR_PL_BASE_8 402 8bit, 1 channel Standard numbers in Poland (8
characters)

Types of recognition of car numbers in Latvia

Car number type Code Image type Description

ANPR_LV_BASE 500 8bit, 1 channel Car numbers of the 1992 and 2004
standards

Types of recognition of car numbers in Lithuania

Car number type Code Image type Description

ANPR_LT_BASE 600 8bit, 1 channel Standard car numbers since 2004

Types of recognition of car numbers in Estonia

Car number type Code Image type Description

ANPR_EST_BASE 700 8bit, 1 channel Car numbers of the 2004 standard

Types of recognition of car numbers in Ukraine

14

Car number type Code Image type Description

ANPR_UA_BASE 800 8bit, 1 channel Standard car numbers of 2015
(passenger cars, trailers, buses)

ANPR_UA_TRANSIT 801 8bit, 1 channel Car numbers for single trips on
cars, trailers and buses of the
2015 standard

ANPR_UA_DIPLOMAT 802 8bit, 1 channel Car numbers of diplomats and
technical personnel, 2013

ANPR_UA_BASE2 803 8bit, 1 channel ANPR_UA_BASE +
ANPR_UA_DIPLOMAT

ANPR_UA_BASE3 804 8bit, 1 channel ANPR_UA_BASE2 +
ANPR_UA_TRANSIT

Types of recognition of car numbers in Moldova

Car number type Cod
e

Image
type

Description

ANPR_MD_2011_BASE 900 8bit,
1
channel

Car numbers legal entities 2011-
2015 + taxi car numbers

ANPR_MD_2011_TRAILER 901 8bit,
1
channel

Trailer and semi-trailer car
numbers 2011-2015

ANPR_MD_2011_SQUARE_BASE 902 8bit,
1
channel

Motorcycle numbers 2011-2015

ANPR_MD_2011_BASE2 903 8bit,
1
channel

ANPR_MD_2011_BASE +
ANPR_MD_2011_TRAILER

ANPR_MD_2011_FULL_WITH_SQ
UARE

911 8bit,
3
channel

ANPR_MD_2011_BASE2 +
ANPR_MD_2011_SQUARE_BA
SE

Type ANPR_CUSTOM_TYPE

This type is a configurable user type and has a value of -1. In this

case, the custom field in the structure must be filled. For all other types of
recognition, the field is empty. The image on the input can be fed as full-
color or gray.

The configurable type is defined in iANPRCustom.h as follows:

const int max_ianpr_custom_in_types = 20;

struct iANPRCustomElement

{

 int all_types;

 float probability; // Probability of the country

 int types[max_ianpr_custom_in_types];// Types are taken in

iANPR

 float probability_types[max_ianpr_custom_in_types]; // The

probability of each type, you can not fill

};

15

struct iANPRCustom

{

 int all_countries;

 iANPRCustomElement* Elements;

int flags; // By default is 0

};

In the current version, the probability of each type does not work. The

probability of a country is not really a probability, but a signification. The
obtained probability of the number is multiplied by the importance value.
Let's take, for example, the Orenburg region, where car numbers from
Kazakhstan come across quite often. Determine the level of significance for
Russia 1.2, and for Kazakhstan 1. Then if the car number from Russia was
identified, then its probability will be multiplied by 1.2. If at the same time
the car number from Kazakhstan is determined, then its probability will be
multiplied by 1. I.e. car number from Russia is more significant than from
Kazakhstan. We can consider this as a form of a priori probability.

If you write a program in C/C++, you can fill the structure yourself, for
example, like this:

iANPRCustom* custom = NULL;
custom = new iANPRCustom;
custom->all_countries = 2;
custom->Elements = new iANPRCustomElement[2];
custom->Elements[0].all_types = 5;
custom->Elements[0].probability = 1.2f;
custom->Elements[0].types[0] = CUSTOM_RUSSIAN_BASE_EXTENDED;
custom->Elements[0].types[1] = CUSTOM_RUSSIAN_PUBLIC;
custom->Elements[0].types[2] = CUSTOM_RUSSIAN_POLICE;
custom->Elements[0].types[3] = CUSTOM_RUSSIAN_ARMY;
custom->Elements[0].types[4] = CUSTOM_RUSSIAN_SQUARE;
custom->Elements[1].all_types = 1;
custom->Elements[1].probability = 1.0f;
custom->Elements[1].types[0] = CUSTOM_KAZ_2012_PRIVATE;

However, in this case, remember that you must delete the selected

elements (memory) by yourself. For other programming languages, you
can use the creation and deletion functions from iANPRCustom.h:

void* CreateiANPRCustom(char* xml_buffer, int buffer_size);
void DeleteiANPRCustom(void* xml);

An example of an xml file that is identical to the code above:
<?xml version="1.0"?>

 <countries value="2">

 <country all_types="5" probability="1.2" comment="First

country - Russia">

 <type value="2"/>

 <type value="3"/>

 <type value="5"/>

 <type value="6"/>

 <type value="8"/>

16

 </country>

 <country all_types="1" probability="1" comment="Second

country - Kazakhstan">

 <type value="102"/>

 </country>

 </countries>

The flags in the iANPRCustom structure are intended for additional

features. At the moment only one FLAG_CUSTOM_MULTI_RESULT flag
is supported, which allows to return not one most probable car number, but
the probable car numbers found (not more than 3). Moreover, the first car
number is most probable. The returned car numbers are in the same text
line, so it must be made larger (at least 40 bytes), the car numbers will be
returned in the following form:

Car number 1 | Car number 2 | Car number 3
To register a flag in xml, you need to change the line with the number

of countries like this:
<countries value="2" multi="1">

Rotation of the input image (alpha, beta, gamma)

iANPR SDK assumes: if the car number on the image is rotated, then

the rotation angle is insignificant (more details in the requirements section
of the recognition algorithm). To correct a significant angle, you can use the
parameters alpha, beta, gamma from ANPR_OPTIONS. Alpha sets the
rotation around the X axis, beta sets the rotation around the Y axis, gamma
sets the rotation around the Z axis. The value 90.0 means no rotation. To
determine the rotation angles along the axes, use the utility persptrans,
which can be found in the iANPR SDK.

anprPlateRect

The function of searching for car numbers on the region of the image.

Image has the OpenCV format.

int anprPlateRect(

IplImage* Image,

CvRect Rect,

ANPR_OPTIONS Options,

int* AllNumber,

CvRect* Rects,

char** Texts,

void* param = NULL

);

17

The parameters are the same as the anprPlate function, the
additional Rect parameter specifies the region to be processed.

The returned values are the same, but an error is added:
ERROR_RECT (-1) is an invalid region.

LicenseValue

Activation function of the licensed version of iANPR. Calling this

function is required only for the licensed version of the library and only once
before the first recognition. If you use the LicenseValue function with a
demo version of iANPR, it will not affect the operation of the program in any
way.

void LicenseValue(

char* lic

);

Parameters:
lic – the array containing the license key.

The function does not return values.

1.2. Interface module – iANPRinterface

The interface module extends the connectivity to the library.

Definitions of functions are presented in iANPRinterface.h.

anprPlateMemory

The function is intended for recognition of a graphic file of formats

BMP, JPEG, PNG, TIFF, which is in memory. For example, a BMP file is
read from the hard disk into memory, and a pointer to it is passed to the
function.

int anprPlateMemory(

char* in_buffer,

int size_buffer,

ANPR_OPTIONS Options,

int* AllNumber,

CvRect* Rects,

char** Texts

18

);

Parameters:
in_buffer – the pointer to the input image;
size_buffer – the size of the image buffer;
The remaining parameters are similar to the anprPlate function.

The return values are the same as in anprPlate.

anprPlateMemoryRect

The function assignment is similar to anprPlateMemory, just like in

anprPlateRect, the search area is added.

int anprPlateMemoryRect(

char* in_buffer,

int size_buffer,

CvRect Rect,

ANPR_OPTIONS Options,

int* AllNumber,

CvRect* Rects,

char** Texts

);

The assignment of parameters and return values is similar to

anprPlateMemory and anprPlateRect.

anprPlateMat

The function is similar to anprPlate, except that the first parameter is

an image in the format cv::Mat of the C++ image interface in OpenCV.

int anprPlateMat(

cv::Mat Image,

ANPR_OPTIONS Options,

int* AllNumber,

CvRect* Rects,

char** Texts

);

The assignment of parameters and return values is similar to

anprPlate.

anprPlateMatRect

19

The function assignment is similar to anprPlateMat, just like in
anprPlateRect, the search area is added.

int anprPlateMatRect(

cv::Mat Image,

CvRect Rect,

ANPR_OPTIONS Options,

int* AllNumber,

CvRect* Rects,

char** Texts

);

The assignment of parameters and return values is similar to

anprPlate.

anprPlateXML

A function similar to anprPlate, except that the numbers returned are

returned in XML format.

int anprPlateXML(

IplImage* Image,

ANPR_OPTIONS Options,

char* xml_buffer,

int* size_xml_buffer

);

Parameters:
Image – the input image in OpenCV format (8-bit 1-channel or 8-bit 3-
channel depending on Options.type_number parameters);
Options – the settings for the recognition mode in ANPR_OPTIONS
structure format;
xml_buffer - the pointer to the buffer allocated in the memory before
calling the function, which will return an XML string of the following format:

<?xml version="1.0" encoding="windows-1251"?>

<action_result version='1.0'>

<allnumbers value='1'>

<number value='M976MM134' coord='243,256,177,53'>

</number>

</allnumbers>

</action_result>

allnumbers shows the number of car plates found. And for each found

car plate, the number tag is returned, whose value is the text of the car
plate, and coord is its coordinates (X, Y, width, height).

20

size_xml_buffer - the size of the allocated buffer, after the function call this
variable will contain the size of the recorded XML string.

Return values are the same as in anprPlate, a possible error is

added:
ERROR_SIZE_XML_BUF (-3) XML buffer size is insufficient.

anprPlateRectXML, anprPlateMemoryXML,
anprPlateMemoryRectXML, anprPlateMatXML,
anprPlateMatRectXML

Variants of the previous functions with parameters returning via XML.

int anprPlateRectXML(

IplImage* Image,

CvRect Rect,

ANPR_OPTIONS Options,

char* xml_buffer,

int* size_xml_buffer

);

int anprPlateMemoryXML(

char* in_buffer,

int size_buffer,

ANPR_OPTIONS Options,

char* xml_buffer,

int* size_xml_buffer

);

int anprPlateMemoryRectXML(

char* in_buffer,

int size_buffer,

CvRect Rect,

ANPR_OPTIONS Options,

char* xml_buffer,

 int* size_xml_buffer

);

int anprPlateMatXML(

cv::Mat Image,

ANPR_OPTIONS Options,

char* xml_buffer,

int* size_xml_buffer

);

21

int anprPlateMatRectXML(

cv::Mat Image,

CvRect Rect,

ANPR_OPTIONS Options,

char* xml_buffer,

int* size_xml_buffer

);

Parameters and return values are similar to the functions described

above.

1.3. Streaming module - iANPRcapture

The streaming module is designed to increase the reliability of

recognition of car numbers on the video stream by combining recognition
results from several frames.

The functions of this module are defined in iANPRcapture.h.
ATTENTION! A multi-type (several numbers for ANPR_CUSTOM_TYPE)
can not be used at the moment.

CreateiANPRCapture

Creating an iANPR-stream.

iANPRCapture CreateiANPRCapture(

int max_frames,

ANPR_OPTIONS Options,

CvRect Rect

);

Parameters:
max_frames - the number of frames from which the result is combined;
Options - recognition settings (filled structure ANPR_OPTIONS);
Rect - recognition area in CvRect format.

Returns the selected iANPRCapture object. If it fails, it returns NULL.

ReleaseiANPRCapture

Release memory from the iANPRCapture object.

22

void ReleaseiANPRCapture(

iANPRCapture *Capture

);

Parameters:
Capture – is a pointer to an iANPRCapture object.

AddFrameToiANPRCapture

The function adds the current frame to the iANPRCapture stream and

returns the recognized car numbers.

int AddFrameToiANPRCapture(

iANPRCapture Capture,

IplImage* Image,

int* AllNumber,

CvRect* Rects,

char** Texts

);

Parameters:
Capture – the iANPRCapture object.
Image – the input image.
The remaining parameters are similar to anprPlate.

The return values are the same as anprPlate.

AddFrameToiANPRCaptureMat

The function adds the current frame (cv::Mat) to the iANPRCapture

stream and returns the recognized car numbers..

int AddFrameToiANPRCaptureMat(

iANPRCapture Capture,

cv::Mat Mat,

int* AllNumber,

CvRect* Rects,

char** Texts

);

The parameters are similar to AddFrameToiANPRCapture except that the
current frame is transmitted in the cv::Mat structure.

The return values are the same as anprPlate.

CreateMemoryForiANPRCapture

23

The function allocates memory for additional streaming recognition
functionality. It is necessary to call only if the function
GetNumbersInMemory is assumed later.

int CreateMemoryForiANPRCapture(

iANPRCapture Capture,

int min_frames_with_plate,

int frames_without_plate,

int max_plates_in_mem

);

Parameters:
Capture – the iANPRCapture object.
min_frames_with_plate - the number of frames between the first and last
recognized car plate, after which you can assume that this is really a car
plate.
frames_without_plate - the number of frames without the previously
recognized car plate, after which you can output the result.
max_plates_in_mem - maximum number of car plates in memory.

The function returns 0 on success, otherwise error.

GetNumbersInMemory

Returns the summed result of finding a car number from memory. It

returns only after frames_without_plate is passed, which set in
CreateMemoryForiANPRCapture.

int GetNumbersInMemory(

iANPRCapture Capture,

int* AllNumber,

char** Texts,

int Size_Texts,

CvPoint* Points,

int* all_point

);

Parameters:
Capture – the iANPRCapture object.
AllNumber – the number of recognized car plates is returned to the last
frame from memory (initially contains the buffer size (number of car plates)
in Texts array).
Texts – the contents of the car plate.
Size_Texts – the size of each element (string) of the Texts array.
Points – a pointer to the CvPoint array allocated for the trajectory before
the call (if NULL, then the trajectory does not return).
all_points – here the size of the Points array is transferred, the number of
points found is returned, and if the array is smaller (1000 elements are

24

recommended) than the points actually found, only the number of points for
which there is space will be returned.

The function returns 0 on success, otherwise error code. If two car
plates are returned simultaneously in the frame, which is unlikely, because
of the summation and delay, the trajectory will return only for the first.

CreateLineIntersection

The function creates a line to fix the intersection. In fact, the line

consists of two lines - and the intersection is fixed only when car number
intersects both lines (done to avoid false positives).

int CreateLineIntersection(

iANPRCapture Capture,

CvPoint p1a,

CvPoint p2a,

CvPoint p1b,

CvPoint p2b

);

Parameters:
Capture – is the iANPRCapture object.
p1a и p2a – the points characterizing the top line (the line can’t be vertical -
the maximum of the delta x can be 3 times smaller than the delta y,
otherwise ERROR_SLOPE_LINE).
p1b и p2b – the points characterizing the bottom line.

The function returns 0 on success, otherwise error. The lines must be
parallel to each other. Otherwise, ERROR_NO_PARALLEL_LINES..

LicenseCapture

Activation function of the licensed version of iANPRcapture. Calling

this function is required only for the licensed version of the library and only
once before the first recognition. If you use the LicenseCapture function
with the demo version of iANPRcapture, it will not affect the operation of
the program in any way.

void LicenseCapture(

char* lic

);

Parameters:
lic – an array containing the license key.

The function does not return values.

25

26

2. Installation and use

There are no special requirements for the installation.

2.1. Windows

To use the iANPR SDK on your computer, you need to install:

Microsoft Visual C++ 2015 Redistributable
https://www.microsoft.com/ru-ru/download/details.aspx?id=48145

Download OpenCV 3.4.0
https://sourceforge.net/projects/opencvlibrary/files/opencv-

win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download

Although the required OpenCV libraries come with the iANPR SDK,

you probably will need the header files to develop your programs. iANPR
used libraries compiled by vc14.

Next, you connect in the form of normal dynamic libraries.

If you implement a project in C/C++ on Visual Studio, then write the

path to .h and .lib for OpenCV and the location of the iANPR:

Add plug-in libraries (in the properties of the linker):

https://www.microsoft.com/ru-ru/download/details.aspx?id=48145
https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download
https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download

27

After that, make sure that all dlls from the x86 or x64 folder are either

in the folder with your executable file, or in the folder specified in the PATH
variable.

2.2. Linux

Used OS - Ubuntu 16.04 desktop i386
1. Guided by
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_inst

all.html
install additional software for OpenCV.
2. Download the OpenCV 3.4.0 for linux from here.
http://sourceforge.net/projects/opencvlibrary/
And compile it.
3. Download and unpack the iANPR SDK.
4. It is necessary to make the library visible for programs. To do this,

you can write the path to libianpr_86.so or just copy this file to the same
place as the OpenCV libraries:

/usr/local/lib/

http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://sourceforge.net/projects/opencvlibrary/

28

5. Update paths to libraries
ldconfig

6. In the example folder for Linux, open the makefile and fix lianpr_64

to lianpr_86 (as we compile in the 32-bit version of Linux).
7. In the same folder, we call
make

You must create an executable file.
8. Check the work of the program.

29

3. C/C++ examples for Windows

3.1. Image

The source code of the examples is constantly being improved. The

description below shows the most significant parts of the code. However,
the full source code of the examples may differ. The full source code for the
example image is located in the samples folder distributed with the iANPR
SDK.

#include "opencv2/highgui/highgui_c.h"
#include "../../Include/iANPR.h"
#include <stdio.h>
#include <Windows.h>

int main(int argc, char** argv)
{
 IplImage* Img = 0;
 IplImage* grayImg = 0;

 // filter input
 if (argc < 2)
 {
 printf ("Too few arguments. For help print %s /?", argv [0]);
 return -1;
 }
 else if (!strcmp (argv [1], "help") || !strcmp (argv [1], "-help") || !strcmp
(argv [1], "--help") || !strcmp (argv [1], "/?"))
 {
 printHelp (argv [0]);
 return 0;
 }
 else if (argc < 3)
 {
 printf ("Too few arguments. For help print %s /?", argv [0]);
 return -2;
 }
 else // argc >= 3
 Img = cvLoadImage(argv[2], CV_LOAD_IMAGE_COLOR);

 if (!Img)
 {
 printf("Can't load file!\n");
 return -4;
 }

 CvRect Rects[100];
 int all = 100;
 char** res = new char*[all];
 for(int j=0;j<all;j++) res[j] = new char[20];
 ANPR_OPTIONS a;
 a.Detect_Mode = ANPR_DETECTCOMPLEXMODE;

30

 a.min_plate_size = 500;
 a.max_plate_size = 50000;
 a.max_text_size = 20;
 a.type_number = atoi (argv [1]);
 a.flags = 0;
 a.max_threads = 1;

 bool isFullType = false;
 for (size_t i = 0; i < anprFullTypesCount; i++)
 if (anprFullTypes[i] == a.type_number)
 isFullType = true;

 // LicenseValue is only required for paid versions

// And only once, before the first recognition.
 char* key = new char[8001]; memset(key, 0, 8001);
 FILE* f = fopen("lic.key", "rb");
 if (f != NULL)
 {
 fread((void*)key, 8000, 1, f);
 fclose(f);
 }
 else
 puts("WARNING! File lic.key not found. This may crash program if you use
license version of iANPR SDK dlls");

 LicenseValue(key);
 delete [] key; key = 0;

 int i = -9999;
 if (isFullType)
 i = anprPlate(Img, a, &all, Rects, res);
 else
 {
 grayImg = cvCreateImage (cvGetSize (Img), 8, 1);
 cvCvtColor (Img, grayImg, CV_BGR2GRAY);
 i = anprPlate(grayImg, a, &all, Rects, res);
 }

 if (i == 0)
 for(int j = 0; j < all; j++)
 {
 printf("%s\n", res[j]);
 }
 else
 printf("Error:%d\n", i);

 for(int j=0;j<100;j++) delete [] res[j];
 delete [] res;
 cvReleaseImage (&Img);
 cvReleaseImage (&grayImg);

 return 0;

}

The example loads an image using the cvLoadImage function.

Further we allocate memory for storing 100 car numbers (we assume that
no more than 100 car numbers will be found, of course, you can install
less).

Next we fill the structure ANPR_OPTIONS, set the mode of detecting
car numbers ANPR_DETECTCOMPLEXMODE. The range of area (in
pixels in square) of car numbers, 1 stream for recognition is established.

31

The value 20 corresponds to the above buffer for storing car numbers. The
type of number detection is set to basic, which means that if the trailer car
numbers, for example, is in the frame, they can’t be recognized correctly.

The license key is read from the file lic.key using the fread function,
and then the key is passed to the LicenseValue function. Calling this
function is required only for the licensed version of the iANPR SDK and
only before the first recognition.

Next we call the anprPlate function from iANPR SDK. After that, the
car numbers found in the image are output to the console.

At the end, the previously allocated memory is released.

Example of using:
image.exe 0 ..\images\image.bmp
Information will be displayed on the console, for redirecting to the file:
image.exe 0 ..\images\image.bmp > res.txt

3.2. Image_new

This example shows how to use various interfaces to work with the

library. Unlike the previous example, an additional header file
iANPRinterface.h is connected.

The Memory function in the example shows the ability to read JPEG,
BMP, PNG, TIFF files from memory. You can read the file into memory,
and then pass the pointer to anprPlateMemory.

The WithMat function provides access to the C++ interface based on
Mat. The image is recognized via the anprPlateMatRect function.

The functions XMLWork and XMLWork2 provide examples of working
with the functions anprPlateRectXML and anprPlateMatRectXML,
respectively. The result is displayed as an XML string in the console.

3.3. Image_omp

In the version of iANPR 1.6, built-in parallelization appeared. This

example can be used to compare the results of the work. In this example,
parallelization is achieved by splitting the input image into separate parts.

When working with large images, for example, 1920x1080, the
recognition time on a conventional PC may not be sufficient for real-time
operation. To solve this problem, you can split the image into parts and
analyze them in parallel. Here, however, it should be remembered that if
car number is located on the intersection of parts, it will not be recognized.

32

Therefore, it is necessary to introduce some redundancy, using intersecting
parts. And the level of intersection is determined by the maximum possible
size of the object recognition.

Suppose that the object of recognition is in the form of a circle, and its
maximum diameter in the image is Dmax. Then the width of the intersection
of segments should be greater than Dmax. In this case, the area of the
analyzed area (in different segments) will be calculated using the following
formula:

S = L * Dmax,
where L is the length of the boundaries between all segments. It is

clear that in this case S will depend not only on the number of segments,
but also on their shape. The following figure shows two examples of the
arrangement of segments. One segment is gray and the other is white. The
intersection area is indicated by dashes.

Dmax

(a)

Dmax

(b)

Decomposition with intersecting boundaries: with a small area of
intersection (a), with a significant intersection area (b)

The disadvantage is that when the image is fully analyzed, Width *

Height will not be analyzed, but Width * Height + S.
Suppose that we know the number of processor cores, for example,

6. We divide the image into 6 parts as follows:

33

It is natural to remember the area of intersection of parts. 1080/6 =
180

Let's take the height of 80 pixels as the maximum height of the
number. Then the parts up and down will increase by 40 pixels, except for
the top and bottom, where the increase is only one way.

In the example, parallelization occurred on the basis of the OpenMP
library.

For each thread, we created our own image, after which a parallel
loop was started:
#pragma omp parallel
 {
#pragma omp for
 for(i = 0; i < max; i++)
 {
 CvRect Rects[100];
 int all = 100;
 char** res = new char*[all];
 for(int j=0;j<all;j++) res[j] = new char[20];
 ANPR_OPTIONS a;
 a.Detect_Mode = ANPR_DETECTCOMPLEXMODE;
 a.min_plate_size = 500;
 a.max_plate_size = 50000;
 a.max_text_size = 20;
 a.type_number = ANPR_RUSSIAN_BASE;
 a.flags = 0;

 int i2 = anprPlate(Images[i], a, &all, Rects, res);
 if (i2 == 0)
 for(int j = 0; j < all; j++) {
#pragma omp critical
 {
 printf("%s\n", res[j]);
 }
 }

 for(int j=0;j<100;j++) delete [] res[j];
 delete [] res;
 }
 }

First, let's compare how much redundancy is, compiling the program

with OpenMP turned off. Successful recognition was in both cases.
Recognition time on AMD-FX (tm)-6100 Six-cores 3.3GHz (on one core),
8GB of RAM, Windows 7 64:

Serial block 0.297c
Parallel block 0.369s
The redundancy of calculations is approximately 1.24 times. In so

much slowed down the processing.
After enabling OpenMP, the parallel block worked for 0.1s. The

productivity gain is 2.9 times.
Why such a small increase? Answer: 1) redundancy; 2) the

calculations in the blocks are uneven - where the number was found, and
where not, so the operating time is the time of recognition of the block with
the maximum information.

34

But even such a performance increase - almost 3 times. And it allows
for 10 seconds to process 10 frames, which for real time can be enough
with these settings.

3.4. Capture

An example of Capture works with a Web camera, but if you specify a

video file as the command line argument, it will handle it. The recognition
information is output directly to the frame as follows:

The feature of this example of stream car number recognition is that

the result of recognizing not every frame is produced, but it is checked
whether there is the same found car number in the previous frame. If the
car number appeared, then the recognition result is output.

This approach allows you to discard a significant part of false
positives that occur in a separate frame.

3.5. Capture_(iANPRcapture)

This example shows how to work with the iANRcapture module.
This module allows to achieve higher recognition accuracy than in the

Capture example, because it checks not a coincidence of car numbers in
both frames, but calculates the overall reliability of the recognized symbols
in the frame with the depth (number of frames) specified by the
programmer:

35

i_capture = CreateiANPRCapture(10, a, cvRect(0, 0, frame->width, frame->height));

Each frame is added to the stream object

i1 = AddFrameToiANPRCapture(i_capture, object, &all, Rects, res);

Where the old frame is forced out and checked - was there a similar

car number on the previous frames. If the car number found in the current
frame is similar to the car numbers in one or more previous ones, the
recognition results are summed up.

3.6. (iANPRcapture_motion)

This example is an improvement on the previous one. Allows you to

calculate the trajectory of the movement of the car plate and detect the
intersection of the line, i.e. it is possible to realize the functional of detecting
the entrance-exit of the car.

The difference of this example is as follows.
Initially, additional memory is created for additional functionality (you

do not need to delete it later, it will be cleaned together with the removal of
the object).

CreateMemoryForiANPRCapture(i_capture, 10, 15, 100);

The maximum number of car plates in memory is 100. If 15 frames

were not the car plate recognized earlier, then the result is output. A car
plate is considered recognized only if its initial detection was earlier than 10
frames in the final one.

Then the intersection line is created:

Lines[0].x = int(frame->width * 0.1f); Lines[0].y = int(frame->height * 0.6f);
Lines[1].x = int(frame->width * 0.3f); Lines[1].y = int(frame->height * 0.6f);
Lines[2].x = int(frame->width * 0.1f); Lines[2].y = int(frame->height * 0.7f);
Lines[3].x = int(frame->width * 0.3f); Lines[3].y = int(frame->height * 0.7f);
CreateLineIntersection(i_capture, Lines[0], Lines[1], Lines[2], Lines[3]);

To obtain such a refined result, each time (in each frame), after

calling the AddFrameToiANPRCapture function, call the function returning
the trajectory:

GetNumbersInMemory(i_capture, &all, res , 20, Points, &all_points);

If the value of all_points is greater than 0, then the car plate is found.

And the display shows the trajectory of the car plate and the car plate itself:

for(int j = 0; j < all_points; j++)

36

{
 cvCircle(frame, Points[j], 5, CV_RGB(0,0,255), 3);
 if (j > 0) cvLine(frame, Points[j], Points[j-1], CV_RGB(0,0,255), 2);
}

CvFont font;
float aa=0.001f*frame->width;
cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, aa,
 aa,0,1, 8);
CvSize size;
int b;
cvGetTextSize(res[0], &font, &size, &b);
cvRectangle(frame, cvPoint(0, 0), cvPoint(size.width + 2,
 50), CV_RGB(255, 255, 255), CV_FILLED);

CvPoint pp2,pp1;
pp2.x=0;
pp2.y=40;
pp1.x=1;
pp1.y=41;
cvPutText(frame, res[0], pp1, &font, CV_RGB(0,0,0));
cvPutText(frame, res[0], pp2, &font, CV_RGB(0,255,0));
cvResize(frame, image);
cvShowImage("frame", image);

3.7. Persptrans

The utility persptrans is designed to eliminate the rotation of the car
number on the original image. The rotation angle is specified in the
ANPR_OPTIONS structure using the alpha, beta, and gamma parameters.
The alpha angle specifies the rotation around the X axis, the angle beta -
around the Y axis, the gamma angle - around the Z axis. The current alpha,
beta and gamma parameters are output to the standard output stream
(console). The obtained values can be used in the ANPR_OPTIONS
structure, which is transferred to one of the recognition functions, for
example, in anprPlate.

The following keys are used to control the program:
• w, s - rotation around the X axis;
• a, d - rotation around the Y axis;
• q, e - rotation around the Z axis;
• r - turn off/on the recognition;
• g - show/hide the grid;
• v, b - increase/decrease the number of grid cells;
• esc (escape) - quit.
Press the control keys in the "Transformed" window. Rotate the

image until you reach the desired result in the recognition.
Note: Try to make sure that the edges of license plate (or at least

bottom edge) on the transformed image were as much as possible parallel
to the borders of the window.

37

Note: Sometimes a smaller rotation is better than the bigger one.

Example of use:
persptrans.exe image.bmp 0

In this usage example, image.bmp will be loaded, the base Russian

car numbers (ANPR_RUSSIAN_BASE, that is, type 0) will be recognized.

38

4. Examples in other programming
languages for Windows

4.1. C#

In C#, it is recommended to use the XML interface to work with the

library. In the library this is an example of a platereader.
The function from the library is connected as follows:

[StructLayout(LayoutKind.Sequential, Pack = 0)]

 public struct ANPR_OPTIONS
 {
 public byte sign1, sign2, sign3;
 public int min_plate_size;
 public int max_plate_size;
 public int Detect_Mode;
 public int max_text_size;
 public int type_number;
 public int flags;
 public IntPtr custom;

 public IntPtr vers;

 public double alpha;
 public double beta;
 public double gamma;

 public int max_threads;
 };
#if WIN32
 [DllImport("iANPRinterface_vc12_x86.dll", CallingConvention =
CallingConvention.StdCall)]
 unsafe public static extern int anprPlateMemoryXML(byte[] in_buffer, int
size_buffer, ANPR_OPTIONS Options,
 StringBuilder xml_buffer, int[] size_xml_buffer);
 [DllImport("iANPR_vc12_x86.dll", CallingConvention = CallingConvention.StdCall)]
 unsafe public static extern void LicenseValue(sbyte[] key);
#elif WIN64
 [DllImport("iANPRinterface_vc12_x64.dll", CallingConvention =
CallingConvention.StdCall)]
 unsafe public static extern int anprPlateMemoryXML(byte[] in_buffer, int
size_buffer, ANPR_OPTIONS Options,
 StringBuilder xml_buffer, int[] size_xml_buffer);
 [DllImport("iANPR_vc12_x64.dll", CallingConvention = CallingConvention.StdCall)]
 unsafe public static extern void LicenseValue(sbyte[] key);
#endif

In the project settings, you must enable unsafe code and specify

WIN32 and WIN64 conditional compilation symbols for the x86 and x64
build configurations, respectively.

39

In the example, the file is read completely into memory and passed to
the library function:

ANPR_OPTIONS anpr;
anpr.Detect_Mode = 14;
anpr.min_plate_size = 500;
anpr.max_plate_size = 25000;
anpr.max_text_size = 20;
anpr.type_number = 0;
anpr.flags = 1;

anpr.sign1 = (byte)'i'; anpr.sign2 = (byte)'a'; anpr.sign3 = (byte)'1';

anpr.vers = Marshal.AllocHGlobal(4);

 Marshal.WriteByte (anpr.vers, (byte) '1');
 Marshal.WriteByte (anpr.vers + 1, (byte) '.');
 Marshal.WriteByte (anpr.vers + 2, (byte) '6');
 Marshal.WriteByte(anpr.vers + 3, 0);

 anpr.alpha = 90;
 anpr.beta = 90;
 anpr.gamma = 90;

anpr.max_threads = 1;

StringBuilder buffer_builder = new StringBuilder(10000);
int[] size_builder = new int[1];
size_builder[0] = 10000;
int result = anprPlateMemoryXML(buffer, size, anpr, buffer_builder, size_builder);

To find out the recognition result, you need to look at the returned

XML:

StringBuilder output = new StringBuilder();
using (XmlReader reader = XmlReader.Create(new StringReader(buffer_builder.ToString())))
{

reader.ReadToFollowing("allnumbers");
reader.MoveToFirstAttribute();
string numbers = reader.Value;
output.AppendLine("Plates found: " + numbers);
int all = Convert.ToInt32(numbers);
for (int i = 0; i < all; i++)
{

reader.ReadToFollowing("number");
reader.MoveToFirstAttribute();
string num = reader.Value;
reader.MoveToNextAttribute();
string num_coord = reader.Value;
output.AppendLine("Номер: " + num + " (Coordinates: " + num_coord + ")");

}
}

As a result, the car numbers and their coordinates are displayed in

the form:

40

4.1.1. Example iANPRcapture_motion in
C# for iANPR SDK

The program iANPRcapture_motion_CShrp is designed to
demonstrate the capabilities of the iANPR SDK in calculating the trajectory
of the car number and detecting the intersection of the car number of
predefined lines, i.e. to demonstrate the possibility of implementing the
functionality of vehicle entry/exit detection using the iANPR SDK. This
program is written in C# and is analogous to the iANPRcapture_motion
program written in C++. These and other usage examples are distributed
as part of the iANPR SDK.

The current version of iANPRcapture_motion_CShrp is used like this:
iANPRcapture_motion_CShrp.exe 7 D:/video.avi
Where 7 is the type of the recognized number (Russian numbers),
D:/video.avi is the full name of the video file.

4.2. Delphi

Of course, in Delphi you can also use XML to return results, but here

is an example of how to call functions from the iANPR demo without XML
using Delphi 7. To call functions from the paid version of iANPR, before
using the recognition functions for the first time, load the license key using
functions LicenseValue or LicenseCapture to activate iANPR.dll or
iANPRcapture.dll, respectively.

41

Definition of types:

type
 ANPR_OPTIONS = Record
 min_plate_size:integer;
 max_plate_size:integer;
 Detect_Mode:integer;
 max_text_size:integer;
 type_number:integer;
 flags:integer;
 end;

type
 CvRect = Record
 x:integer;
 y:integer;
 width:integer;
 height:integer;
 end;
type
 PRect = ^CvRect;

Connection the function:

function anprPlateMemoryRect(in_buffer: PChar; size_buffer: integer; Rect: CvRect;
Options: ANPR_OPTIONS; AllNumber: PInt; Rects: PRect; Texts: PPChar): integer;
stdcall; external 'iANPRinterface_vc12_x86.dll'
 name 'anprPlateMemoryRect';

Reading from a file and calling the function:

with TFileStream.create(File_, fmOpenReadWrite) do
 try
 GetMem(p, Size);
 read(p^, Size);
 s := Size;
 finally
 free;
 end;
 all := 100;
 anpr.min_plate_size := 500;
 anpr.max_plate_size := 25000;
 anpr.Detect_Mode := 6; // ANPR_DETECTMODE2 | ANPR_DETECTMODE3;
 anpr.max_text_size := 20;
 anpr.type_number := 0; // ANPR_RUSSIAN_BASE
 anpr.flags := 0;
 pr := @rect;
 GetMem(ptext, all * sizeof(pchar));
 for i := 0 to all-1 do
 GetMem(ptext[i], 20 *sizeof(char));
 RectArea.x := 0; RectArea.y := 0;
 RectArea.width := 640; RectArea.height := 480;
 r := anprPlateMemoryRect(p, s, RectArea, anpr, @all, pr, @ptext[0]);
 FreeMem(p);

42

5. Recommendations for use

REQUIREMENTS RECOGNITION ALGORITHM

Vehicle identification number must be placed in the frame in its entirety.
Vertical angle of the video camera is not more than 40°.
The inclination angle depth - not more than 30°.
Images must be clear and not blurry.
The character size for reliable recognition must be at least 14 pixels in
height.
The distance to the car camera is determined by the focal length set on the
camera and must meet the requirements for the height of the characters
and the clarity of the image. This can be 3 meters and 7 meters, depending
on the camera used and its settings.

COMPARISON OF PERFORMANCE FOR DIFFERENT VERSIONS

Computer: AMD-FX (tm) -6100 Six-cores 3.3GHz (on one core), 8GB of
RAM, Windows 7 64 in ANPR_RUSSIAN_BASE mode
The average image processing is 640x480: 0.025s (PRO), 0.8c (FREE)
The average image processing is 1920x1080: 0.26s (PRO), 9c (FREE)

RECOMMENDATIONS FOR RECOGNITION PARAMETERS
1. For parking entry automation systems on the list of white numbers.
Detect_Mode = ANPR_DETECTCOMPLEXMODE;
flags = DEBUG_RECOGNITION_MODE;
In order to observe the maximum number of car plates, combine the results
and then screen out the list of white numbers. Car plate with one
mistakenly recognized symbol or even unrecognized, you can, on the basis
of the coincidence of the remaining symbols with the number from the white
list (you compare yourself) be attributed to the correctly recognized one.
2. For systems of reliable number recognition in the absence of a
whitelist.
Detect_Mode = ANPR_DETECTMODE2 | ANPR_DETECTMODE3;
flags = NO_LOW_RELIABILITY;
For the minimum number of false positives.

43

6. How to use the demo version of the
iANPR SDK

The demo version is not intended for recognition in real time, but only

allows you to estimate the recognition functions of car numbers. The
recognition technology is implemented in the library iANPR_vc14_x86.dll is
significantly slower (approximately 25-35 times depending on the
recognition mode and processor) to limit usage. You can check the work of
the SDK using the ready-made examples. For example, image.exe.

image 0 image.bmp > image.txt
After working out in image.txt, the results of the recognition algorithm

work (the same is achieved by the bat-file run_read_image_bmp.bat). If
you want to recognize a group of files in a directory, then you can use the
bat-file run_read_in_dir.bat. For example, like this:

run_read_in_dir.bat c:\im
Recognition results will be displayed in the console.

To test the recognition in the stream, which should increase the

reliability of recognition by analyzing not one frame but a sequence, you
need to use the capture example. By default, the example works with a
camera connected to the computer, but here it should be remembered that
as the speed is significantly slowed down, the reliability will even go down,
but not rise. So if you want to test the real reliability of the recognition, then
write the video to the file first, and then call the example with the
parameter, for example:

capture.exe 0 100media\AMBA2826.MOV

44

Conclusion

The library is constantly developing and improving, including in terms

of recognition quality.
Recognition of car numbers from other countries will be added.
Additional modules with auxiliary functions are planned.
When errors occur, incorrect recognition, etc., please contact

support@intbusoft.com, specifying the algorithm settings that you are using
and attaching an image with which you are having problems.

